Plus One Math's Solution Ex 3.1 Chapter 3 Trigonometric Functions

0


The solutions for the
 Trigonometric Functions are not readily available. While many schools may have a ready-made solution for this set in their school textbook, some might not. This is where our solution will be useful. In this article, you will find detailed solutions provided by us for the above set.Trigonometric Functions (Key Concept Reference) describes some basic and advanced uses of trigonometric functions, including identities, graph transformations, inverse functions, solutions of triangles, and polar coordinates.

Ncert Plus one Maths chapter-wise textbook solution for chapter 3 Trigonometric Functions Exercise 3.1. It contains detailed solutions for each question which have prepared by expert teachers to make each answer easily understand the students. they are well arranged solutions so that students would be able to understand easily.

BoardSCERT, Kerala
Text BookNCERT Based
ClassPlus One 
SubjectMath's Textbook Solution
ChapterChapter 3
ExerciseEx 3.1
Chapter NameTrigonometric Functions
CategoryPlus One Kerala


Kerala Syllabus Plus One Math's Textbook Solution Chapter  3 Trigonometric Functions Exercises 3.1


Chapter  3 Trigonometric Functions Textbook Solution



Kerala plus One maths NCERT textbooks, we provide complete solutions for the exercise and answers provided at the end of each chapter. We also cover the entire syllabus given by the Board of secondary education, Kerala state.

Chapter  3 Trigonometric Functions Exercise   3.1

Find the radian measures corresponding to the following degree measures:

(i) 25° (ii) – 47° 30' (iii) 240° (iv) 520°

(i) 25°

We know that 180° = π radian

(ii) –47° 30'

–47° 30' = degree [1° = 60']

 degree

Since 180° = π radian

(iii) 240°

We know that 180° = π radian

(iv) 520°

We know that 180° = π radian

Find the degree measures corresponding to the following radian measures

.

(i)  (ii) – 4 (iii)  (iv) 

(i) 

We know that π radian = 180°

(ii) – 4

We know that π radian = 180°

(iii) 

We know that π radian = 180°

(iv) 

We know that π radian = 180°

A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?

Number of revolutions made by the wheel in 1 minute = 360

∴Number of revolutions made by the wheel in 1 second =

In one complete revolution, the wheel turns an angle of 2π radian.

Hence, in 6 complete revolutions, it will turn an angle of 6 × 2π radian, i.e.,

12 π radian

Thus, in one second, the wheel turns an angle of 12π radian.


Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm.

We know that in a circle of radius r unit, if an arc of length l unit subtends an angle θ radian at the centre, then

Therefore, forr = 100 cm, l = 22 cm, we have

Thus, the required angle is 12°36′.


In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.

Diameter of the circle = 40 cm

∴Radius (r) of the circle =

Let AB be a chord (length = 20 cm) of the circle.

In ΔOAB, OA = OB = Radius of circle = 20 cm

Also, AB = 20 cm

Thus, ΔOAB is an equilateral triangle.

∴θ = 60° =

We know that in a circle of radius r unit, if an arc of length l unit subtends an angle θ radian at the centre, then.

Thus, the length of the minor arc of the chord is.


If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.

Let the radii of the two circles be and. Let an arc of length l subtend an angle of 60° at the centre of the circle of radius r1, while let an arc of length subtend an angle of 75° at the centre of the circle of radius r2.

Now, 60° =and 75° =

We know that in a circle of radius r unit, if an arc of length l unit subtends an angle θ radian at the centre, then.

Thus, the ratio of the radii is 5:4.


Find the angle in radian though which a pendulum swings if its length is 75 cm and the tip describes an arc of length

(i) 10 cm (ii) 15 cm (iii) 21 cm

We know that in a circle of radius r unit, if an arc of length l unit subtends an angle θ radian at the centre, then.

It is given that r = 75 cm

(i) Here, l = 10 cm

(ii) Here, = 15 cm

(iii) Here, = 21 cm

Find the values of other five trigonometric functions if x lies in third quadrant.

Since lies in the 3rd quadrant, the value of sec x will be negative.


Find the values of other five trigonometric functions if x lies in fourth quadrant.

Since x lies in the 4th quadrant, the value of sin x will be negative.


Find the values of other five trigonometric functions if x lies in second quadrant.

Since x lies in the 2nd quadrant, the value of sec x will be negative.

∴sec x =

Find the value of the trigonometric function sin 765°

It is known that the values of sin repeat after an interval of 2π or 360°.


PDF Download

Chapter 3 Trigonometric Functions EX 3.1 Solution


Chapter 3 Trigonometric Functions EX 3.1 Solution- Preview

PREVIEW

Plus One Math's Chapter Wise Textbook Solution PDF Download



Feel free to comment and share this article if you found it useful. Give your valuable suggestions in the comment session or contact us for any details regarding HSE Kerala Plus one syllabus, Previous year question papers, and other study materials.

Plus One Maths Related Links



Other Related Links


We hope the given HSE Kerala Board Syllabus Plus One Maths Textbook solutions Chapter Wise Pdf Free Download in both English Medium and Malayalam Medium will help you. 

If you have any queries regarding Higher Secondary Kerala Plus One   NCERT syllabus, drop a comment below and we will get back to you at the earliest.

Keralanotes.com      Keralanotes.com      Keralanotes.com      Keralanotes.com      Keralanotes.com      

Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.
Post a Comment (0)

#buttons=(Accept !) #days=(30)

Our website uses cookies to enhance your experience. know more
Accept !
To Top

Join Our Whatsapp and Telegram Groups now...